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Abstract. To find an exact form for the generalization error of a learning machine is an open
problem, even in the simplest case: simple perceptron learning. We introduce a new approach
to tackle the problem. The generalization error of the simple perceptron is expressed as a linear
combination of extreme values of inputs. With the help of extreme value theory in statistics
we then obtain an exact form of the generalization error of the simple perceptron in the case of
the worst learning. Generalization errors of the higher-order perceptron taking the form of an
inverse power law in the number of examples are also considered.

1. Introduction

Understanding a neural network’s ability to infer an unknown rule from a set of examples
has become a fascinating topic in neural networks. Obtaining an exact form for the
generalization errors together with learning errors is of vital importance when assessing
how fast a network improves its behaviour. Currently there are three approaches to estimate
generalization errors of a learning machine.
• According to the Vapnik–Chervonenkis (VC) theory of learning curves, minimizing

empirical error within a function classF on a random sample oft examples leads to
generalization error bounded by O(d/t) in the case that the target function is contained in
F . The bound is universal; it holds for any class of hypothesis functionF , for any input
distribution and for any target function. The only problem being specific quantity remaining
in the bound is the VC dimensiond, a measure of the complexity of the function classF .
There is much research activity on this topic, see for example [4–6, 22, 32, 33].
• Recently, using techniques developed in the physics of disordered systems [17], exact

learning curves have been calculated for a variety of rules and network models. Broader
reviews can be found in [30, 34], cases of concrete learning problems are discussed
in [10, 21, 27, 29, 31, 35]. When the number of examples grows large, and the network
parameters assume continuous values, the results obtained for many models suggest that
learning curves may have universal asymptotic features. For the important case in which
the rule can be implemented exactly by the network, the decay of the so-called generalization
error follows an inverse power law in the number of examples, with a constant (often called
an ‘effective dimension’), that is proportional to the number of adjustable parameters.
• A similar result for the scaling of the so-called entropic error was given using

asymptotic methods of statistics [1–3, 26]. It was proved again that the generalization
error is of the form 1/t with an exactly given coefficient depending on the dimensionm of
input signals.

The theory of generalization errors is already well developed, however, little is known
about the exact form of generalization errors of some concrete learning rules [28]. Even
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in the simplest case—the simple perceptron—the problem of finding the coefficient of the
generalization error is still open except for some very special cases [2]. In this paper, based
upon the extreme value theory of statistics, we propose a novel approach aiming to be a
complement of the approaches above—to obtain theexact form of the generalization errors
of some concrete learning algorithms. The idea underlying our approach is straightforward.
The generalization error for a given machine is universal, as confirmed by all previous
studies, in the sense that it does not depend on the input distribution at all. This fact
suggests that to calculate the generalization errors we should build up a model which is as
simple as possible. By choosing a specific input we show that the generalization error of
the simple perceptron is basically a linear combination of extreme values of input signals.
Fortunately, for extreme values of an i.i.d. random sequence we fully understand their
properties, which enables us to complete our calculation.

Extreme value theory was first introduced to tackle disordered systems in [18, 13].
Recently good work which compares the extreme value theory approach and Parisi’s ‘replica
symmetry breaking’ scheme was presented in [9]. Although in this paper we confine
ourselves to the case of the perceptron learning, both linear and higher order, we expect
that our approach opens up new possibilities to rigorously consider the generalization errors
of a class of learning machines.

2. The set-up

2.1. The model

We briefly outline the simple perceptron here and refer the reader to [23, p 98] for a more
detailed discussion.

Consider the simple perceptron fed withm-dimensional independent inputsξ(τ ) =
(ξi(τ ), i = 1, . . . , m) ∈ �+ ∪ �− = � ⊂ Rm, τ = 1, 2, . . . . Suppose that the two
nonintersecting sets�+ and�− are linear separable which implies that there is a vector
of weightsw = {w1, w2, . . . , wm} satisfying sign(w · ξ) > 0 if and only if ξ ∈ �+ (the
threshold can always be thought of as a weight subjected to a constant input taking the
value 1).

Suppose that at timeτ the weights of the simple perceptron arew(τ ). Then at time
τ+1 with the incoming signalξ(τ+1) we updatew(τ ) according to the perceptron learning
rule

w(τ + 1) = w(τ )− γ ·2(ξ(τ + 1) ·w)ξ(τ + 1) (1)

whereγ > 0 is the learning rate and2(x) = 1 if x > 0 and2(x) = 0 otherwise. After
repeatedly presenting the examplesξ(τ ), τ = 1, . . . , t we find an output functionh(x),x ∈
Rm which separates examples{ξ(τ ), ξ(τ ) ∈ �+, τ = 1, . . . , t} from {ξ(τ ), ξ(τ ) ∈ �−, τ =
1, . . . , t}.

2.2. Generalization errors

Without loss of generality we assume that the task for the machine to accomplish is
the classification problem—to separate data set�+ = {ξ(τ ), ξ1(τ ) < 0} from �− =
{ξ(τ ), ξ1(τ ) > 0} and so sign(ξ1(τ )) is the so-called target function (see remark 2 below).
Suppose that after training witht examples using the simple perceptron learning rule, the
output of the learned machine ish(ξ(t + 1)) ∈ {−1, 1} when a new signalξ(t + 1) arrives.
One key assumption (see figure 1) of our approach is that we take into account the case of
worst learning (whenγ is small the following assumption is approximately true).
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Figure 1. Full circle: examples of input signals. (a) The target function is sign(x) (full plane).
After learning t examples, a perceptron is capable of separating data on the two sides of the
patterned planeh(x, y, z) = 0 (redrawn in (b)). �(t): the region between the full plane and the
patterned plane. (b) The planeh(x, y, z) = 0 is determined by extreme valuesξ(tt), ξ(t (t − i))
andξ(t (t − j)), i 6= j , i > 1, j > 1.

Assumption 1.The planeh(x) = 0 passes throughm examples so that all examples learnt
{ξ(τ ) ∈ �+, τ = 1, . . . , t} are on the one side of it.

Suppose that the distribution ofξ(τ ) is symmetric with respect tox1 = 0, the
generalization error can then be defined by

ε(t,m) = 〈|h(ξ(t + 1))− sign(ξ1(t + 1))|〉
= 〈P(ξ(t + 1) ∈ �(t)|Ft )〉 (2)

where�(t) is the region (the region between the filled and patterned planes shown in
figure 1(a)) between the target function and output functionh and�(t) ∈ Ft , Ft is the
sigma-algebra generated by{ξ(τ ), τ 6 t}.

2.3. Extreme values

Extreme value theory in statistics, a well-developed and powerful tool, was first introduced
into neural network circles in [18] for considering the capacity of the Hopfield model and
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other models [11, 14]. A brief account of the results employed in this paper can be found
in the appendix and section 6 of [14]. Here we apply it in the estimation of generalization
errors.

Let ξ1(tk) be the(t − k)th smallest minimum in the set{ξ1(τ ), τ = 1, . . . , t} and so

ξ1(tt) = min{ξ1(τ ), τ = 1, . . . , t}
ξ1(t (t − 1)) = min{ξ1(τ ) > ξ1(tt), τ = 1, . . . , t, τ 6= t t}
...

(3)

For simplicity of notation we callξ(t (t − k)) the (t − k)th smallest minima in the set
{ξ(τ ), τ = 1, . . . , t}. Assumption 1 thus indicates that the output functionh = 0 passes
through the global minimumξ(tt) = (ξ1(tt), ξ2(tt), . . . , ξm(tt)) andm − 1 other minima,
sayξ(t (t−k1)), ξ(t (t−k2)), . . . , ξ(t (t−km−1)). Note that hereki depends on the realization
of {ξ(τ ), τ = 1, . . . , t} (figure 1).

Whenk is fixed there are three types of behaviour for extreme valuesξ1(tt) of a sequence
of random variablesξ1(1), ξ1(2), . . . , ξ1(t). For a full exposition of extreme value theory
we refer the reader to [24, 19]. Typically for an extremeξ1(t (t − k)) of a sequence of
random variables, i.e. for thekth minimum of a sequence, we have the following property

〈ξ1(t (t − k))〉 = c(k)o(γ (t)) (4)

wherec(k) is a constant depending onk andγ (t) is a vanishing rate oft .
When kt tends to infinity ast tends to infinity, the behaviour ofξ(t (t − kt )) is

substantially different from that ofξ(t (t − k)) with k independent oft , it may take a
finite value rather than tending to zero as described in equation (4).

3. The simple perceptron

Before proving the main theorem we need a few lemmas which are of interest in themselves.
These lemmas provide us with a rudimentary and transparent insight which elucidates the
underlying mechanism of the universal property of generalization errors.

Lemma 1.Suppose thatξ1(τ ) ∼ U(0, 1), the uniform distribution over [0, 1]. Whent →∞
we have

P
(
ξ1(tt) >

x

t

)
= e−x (5a)

P
(
ξ1(t (t − k)) > x

t

)
= e−x

k−1∑
s=0

xs

s!
(5b)

〈ξ1(t (t − k))〉 = k + 1

t
(5c)

for x > 0.

Proof.
(5a) From example 1.7.9 in [24] (see the appendix and section 6 of [14]) we know

that P(η(tt) 6 1 − x/t) = e−x for η(tt) representing the largest maximum ofξ1(τ ),
τ = 1, . . . t . Then (5a) is a simple consequence of the symmetry between 1 and 0 of the
uniform distribution.

(5b) This is a simple consequence of theorem 2.2.2 and example 1.7.9 in [24] (see the
appendix and section 6 of [14]).

(5c) It is a consequence of (5b). �
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The following lemma tells us that the generalization of the one-dimensional simple
perceptron is of the form 1/t , which is the building-block of generalization errors with
m-dimensional inputs.

Lemma 2.For uniformly distributed inputsξ1(τ ), whent →∞ we have

ε(t, 1) := 〈P(ξ1(t + 1) 6 ξ1(tt)|Ft )〉 = 1

t
. (6)

Proof. By definition of ε(t, 1) (equation (6)) and equation (5) we obtain

ε(t, 1) = 〈ξ1(tt)〉
=
∫ ∞

0
xte−tx dx

=
∫ ∞

0
e−tx dx

= 1

t
. (7)

�

We now turn our attention to a more general case: the input signals are continuously
distributed random variables. By this we mean that the Radon–Nikodyn derivative of the
input distribution is absolutely continuous with respect to the Lebesgue measure. Denote
the density

f (x) = dP/dx.

From the definition ofε(t, 1) (equation (6)) we see that

ε(t, 1) =
〈 ∫ ξ1(tt)

0
f (x) dx

〉
. (8)

Define a transformationY : R1→ R1 by

Y (x) =
∫ x

0
f (u) du (9)

then equation (8) becomes

ε(t, 1) =
〈 ∫ Y (ξ1(tt))

Y (0)
dY (x)

〉
. (10)

Since the functionY is a nondecreasing function we conclude that

Y (ξ1(tt)) 6 Y (ξ1(t (t − 1))) 6 · · · 6 Y (ξ1(tk)) 6 · · · k < t − 1

which yields the following lemma.

Lemma 3.If ξ1 is a continuously distributed random variable we have

ε(t, 1) = 1/t

or more generally

〈ξ1(t (t − k))〉 = k + 1

t
.
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Figure 2. Generalization error versus number of examples. The inputsξ1 are subjected to the
Weibull distribution with parameterA = 10 andB = 1.

Lemma 3 gives rise to a transparent and elementary proof of the universal property
of the generalization errors of the simple perceptron in one-dimensional case;ε(t, 1) is
independent of the distribution of inputs;ε(t, 1) = 1/t for any continuously distributed
inputs.

Example 1.ξ1(τ ) is distributed according to a Weibull distribution with shape parameterA

and scale parameterB. We note that the density function is then

f (x) =


A

B
xA−1 exp

(
−x

A

B

)
if x > 0

0 otherwise.

Figure 2 shows our numerical results withA = 10 andB = 1.

From lemmas 1–3 we obtainε(t, 1), a generalization of the one-dimensional case without
any geometric structure. What is the simplest inputs embodying the geometric structure of
m-dimensional inputs? Our answer is as follows.

Assumption 2.We suppose thatξ2(τ ) ∼ 1/m(δ(x2=0,x3=0,...,xm=0)+ δ(x2=1,x3=0,...,xm=0)+ · · · +
δ(x2=0,x3=0,...,xm=1)), i.e. input signals are drawn fromm lines (x2 = 0, x3 = 0, . . . , xm = 0),
(x2 = 1, x3 = 0, . . . , xm = 0), . . . and(x2 = 0, x3 = 0, . . . , xm = 1) of Rm.

With the help of the above lemmas and assumption 2 we consider the generalization
errors of the simple perceptron withm-dimensional inputs.

Theorem 1.We have the following conclusion

ε(t,m) =


1

t
if m = 1

(m− 1)!

(m− 1)(m−1)

(m
2
+ 1

) 1

t
otherwise.

(11)
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Figure 3. When ξ2(tt) = ξ2(t (t − 1)) 6= ξ2(t (t − 2)), �(t) is the region on the left-hand side
of the line passing through(ξ1(tt), ξ2(tt)) and(ξ1(t (t − 2)), ξ2(t (t − 2))).

Proof. Sincem = 1 is proved in lemma 3 we only need to consider the case ofm > 2.
The following identity is a basic one which indicates that whenξ2(tt) 6= ξ2(t (t − 1)) 6=
. . . 6= ξ2(t (t −m+ 1)), �(t) is simply the region on the left-hand side of the plane passing
through(ξ1(tt), ξ2(tt)), (ξ1(t (t−1)), ξ2(t (t−1))), . . . and(ξ1(t (t−m+1)), ξ2(t (t−m+1))),
when ξ2(tt) = ξ2(t (t − 1)) but ξ2(tt) 6= ξ2(t (t − m)) 6= . . . 6= ξ2(t (t − 2)) 6= ξ2(t (t − 1))
then�(t) is the region on the left-hand side of the plane passing through(ξ1(tt), ξ2(tt)),
(ξ1(t (t − 2)), ξ2(t (t − 2))) . . . and (ξ1(t (t − m)), ξ2(t (t − m))) . . . (see figure 3). In the
following proof we use the convention that fork1, k2, . . . , km−1 > 1

{ξ2(tt) 6= ξ2(t (t − k1)) 6= · · · 6= ξ2(t (t − k1− · · · − km−1))}
= {ξ2(tt) = ξ2(t (t − 1)) = · · · = ξ2(t (t − k1+ 1)) 6= ξ2(t (t − k1)

6= · · · 6= ξ2(t (t − k1− · · · − km−1)}
namelyki is the lowest value ofk with the property thatξ2(t (t−k)) 6= ξ2(t (t−k1−· · ·−ki))
wherek < k1+ · · · + ki , i = 1, . . . , m− 1.

The definition of the generalization errorε(t,m) implies that

ε(t,m) = 〈[P(ξ(t + 1) ∈ �(t)|ξ2(tt) 6= ξ2(t (t − 1)) 6= · · · 6= ξ2(t (t −m+ 1)))

·I{ξ2(tt)6=ξ2(t (t−1))6=···6=ξ2(t (t−m+1)))}
+P(ξ(t + 1) ∈ �(t)|ξ2(tt) 6= ξ2(t (t − 2)) 6= · · · 6= ξ2(t (t −m)))
·I{ξ2(tt)6=ξ2(t (t−2))6=···6=ξ2(t (t−m)))}
+P(ξ(t + 1) ∈ �(t)|ξ2(tt) 6= ξ2(t (t − 3)) 6= · · · 6= ξ2(t (t −m− 1)))

·I{ξ2(tt)6=ξ2(t (t−3))6=···6=ξ2(t (t−m−1)))}
+ · · ·]〉 (12)

where I is the indicator function. Therefore to obtain an exact expression ofε(t,m) it
suffices for us to consider each term in equation (12). In fact we see that

P(ξ(t + 1) ∈ �(t)|ξ2(tt) 6= ξ2(t (t − k1)) 6= · · · 6= ξ2(t (t − k1− · · · − km−1)))
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= 1

m

[ ∫ ξ1(tt)

0
dx +

∫ ξ1(t (t−k1))

0
dx + · · · +

∫ ξ1(t (t−k1−···−km−1))

0
dx

]
= 1

m
[ξ1(tt)+ ξ1(t (t − k1))+ · · · + ξ1(t (t − k1− · · · − km−1))]. (13)

Note that
m!

mmk1 . . . mkm−1
= P(ξ2(tt) 6= ξ2(t (t − k1)) 6= · · · 6= ξ2(t (t − k1− k2 · · · − km−1)))

together with equation (13) we derive that

〈[P(ξ(t + 1) ∈ �(t)|ξ2(tt) 6= ξ2(t (t − k1)) 6= · · · 6= ξ2(t (t − k1− · · · − km−1))

·I{ξ2(tt)6=ξ2(t (t−k1))6=···ξ2(t (t−k1−···−km−1))}]〉
= m!

m2

[
1

mk1
. . .

1

mkm−1
(〈ξ1(tt)〉 + 〈ξ1(t (t − k1))〉 + · · ·

+〈ξ1(t (t − k1− k2− · · · − km))〉)
]
. (14)

Substituting equation (14) into equation (12), in terms of lemma 3 we obtain:

ε(t,m) =
∞∑

k1,k2,...,km−1=1

1

m2

m!

mk1 . . . mkm−1
[〈ξ1(tt)〉 + 〈ξ1(t (t − 1))〉 + · · ·

+〈ξ1(t (t − k1− k2− · · · km−1))〉]
=

∑
k1,k2,...,km−1

1

m2

m!

mk1 . . . mkm−1

[
1

t
+ 1+ k1

t
+ · · · + 1+ k1+ · · · + km−1

t

]
=

∑
k1,k2,...,km−1

1

m2

m!

mk1 . . . mkm−1

[
m

t
+ (m− 1)k1

t
+ · · · + km−1

t

]
. (15)

By the identity
∞∑
k=1

k

mk
= m

(m− 1)2
. (16)

Equation (15) becomes

ε(t,m) = m!

m2

[
m

t

1

(m− 1)(m−1)
+ (m− 1)

(m− 1)m−2

m

(m− 1)2
+ · · · + 1

(m− 1)m−2

m

(m− 1)2

]
= m!

m2

[
m

t

1

(m− 1)(m−1)
+ m

2(m− 1)

2t

1

(m− 1)m

]
= (m− 1)!

(m− 1)(m−1)

(m
2
+ 1

) 1

t
(17)

which is the desired conclusion. �

Equation (12) is the key identity of our approach which indicates thatε(t,m) is a linear
combination of extremes under assumptions 1 and 2. The identity enables us to obtain,
in conjunction with extreme value theory, an exact expression for generalization errors of
the simple perceptron. It can readily be seen that all conclusions in theorem 1 are valid
whenξ2(τ ) ∼ p1δ(x2=0,x3=0,...,xm=0)+p2δ(x2=1,x3=0,...,xm=0)+· · ·+pmδ(x2=0,x3=0,...,xm=1)) with
pi > 0, i = 1, . . . , m,

∑m
i=1pi = 1.

To confirm our theoretical approach above; the coefficient of the generalization error
of the simple perceptron is independent of input distributions, here we include a numerical
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Figure 4. Generalization error versus number of examples. Numerical simulations of
ε(t, 2) when inputs(ξ1(τ ), ξ2(τ )) are i.i.d. uniformly distributed random variables.ε(t, 2) for
t = 100, 200, 300, . . . ,10 000 are numerically calculated.

simulation to estimate the generalization errorε(t, 2). Let both ξ1(τ ), ξ2(τ ) be i.i.d. and
uniformly distributed over [0, 1]. Figure 4 shows the numerical results with 10 000 times
simulations for eacht = 100, 200, . . . ,10 000. Numerical results underpin our theoretical
approach; the exact form of the generalization error of the simple perceptron can be obtained
under assumptions 1 and 2.

Remark 1.Surprisingly, our numerical and theoretical results are both different from the
results obtained in terms of the replica trick approach in which it is estimated that
ε(t,m) = 0.62m/t . The deviation can be understood from the following two reasons.
First the replica trick approach, as we have already referred to at the beginning of the
paper, is only valid whenm tends to infinity in proportion tot . Secondly, the behaviour
of extreme values also changes substantially whenk is in proportion tot , see for example
[7, 8]. However, whenm is small this effect will not play a role in our estimation since
in equation (12) the term with largek is already quite small. But whenm → ∞ is in
proportion tot we have to take this effect into account in equation (12).

Remark 2.According to lemma 3 we have the same result when the target plane is arbitrary
rather thanx = 0.

4. High-order perceptron

The higher-order simple perceptron is a generalization of the simple perceptron considered
in the previous section. These higher-order neurons, called sigma–pi units by Rumelhart
et al [23] can be employed to define the conditions of invariant perceptron. The action
of the higher-order synapses can be understood, from a more general point of view, as
the evaluation of nonlocal correlations between input patterns. Bialek and Zee [23] have
argued, in the context of statistical mechanics, that such nonlocal operations are an essential
requisite of invariant perception. There is no doubt that human vision allows for a very
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large class of invariances, achieving close to optimum performance, but it is not known to
what extent the brain relies on nonlocal information processing for that purpose. It is well
known that a higher-order simple perceptron, without resorting to multilayer structures and
the BP algorithm, is capable of solving any classification problems. In this section we carry
out a calculation of generalization errors of the higher-order perceptron.

Lemma 4.For uniformly distributed inputsξ1(τ ), whent →∞ we have

ε(t, 1) := 〈P(ξ1(t + 1) 6 ξp1 (tt)|Ft )〉 =
0(p + 1)

tp
p > 0 (18)

where0(x) is the gamma function.

Proof. By the definition ofε(t, 1) (equations (6) and (5)) we obtain

ε(t, 1) = 〈ξp1 (tt)〉
=
∫ ∞

0
xpte−tx dx

= 1

tp

∫ ∞
0
xpe−x dx

= 0(p + 1)

tp
. (19)

�

The high order of perceptron does not have an influence onξ2(τ ) and so, combining
conclusions in the previous section, we conclude the following theorem.

Theorem 2.Under assumptions 1 and 2 for thep-order perceptron,p > 0, we have

ε(t,m) =


0(p + 1)

tp
if m = 1

(m− 1)!0(p + 1)

(m− 1)(m−1)

(m
2
+ 1

) 1

tp
otherwise.

(20)

5. Conclusions

Although the perceptron learning rule is now almost 40 years old it does not seem to have
lost much of its attraction [20]. On the contrary, there are several appealing features, on
both a practical and theoretical level, that make it appear advantageous—the perceptron rule
is easy to implement since the corrections are simple additions or subtractions; the famous
perceptron convergence theorem states that any set of examples that has a solution vector
will be classified correctly after learning. In this paper we have calculated the generalization
error of thep-order perceptron of the worst learning wherep > 0.

There are many questions requiring further investigation. For example, a challenging
problem is to generalize our approach to consider algorithms such as the BP algorithm
etc [12, 15, 16]. It is promising to replace the line we considered in this paper by a curve
reflecting the nonlinearity of the BP and the curve is determined by a few (more than two in
the two-dimensional case) extreme values of input signals; taking a similar approach to that
which we developed here, we would expect to obtain a learning curve for the BP algorithm.

In summary, our approach reported in this paper opens up new possibilities for rigorous
analyses of generalization errors which reflect intricate nonlinear properties underlying most
learning algorithms in neural networks.
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